
6. More on Pointers

14th September

IIT Kanpur

C Course, Programming club, Fall 2008 1



Pointers and arrays

• Pointers and arrays are tightly coupled.

char a*+ = “Hello World”;

char *p = &a[0];

C Course, Programming club, Fall 2008 2



Pointers and arrays contd..

• Name of the array is synonymous with the 
address of the first element of the array.

3C Course, Programming club, Fall 2008

int *p;
int sample[10];
p = sample; // same as p = &sample[0];

int *p;
int sample[10];
p = sample;
p[5] = 100; // Both these statements
*(p+5) = 100; // do the same thing



Pointers and function arguments

• Functions only receive copies of the variables passed to 
them.

{program: swap_attempt_1.c}
• A function needs to know the address of a variable if it 

is to affect the original variable
{program: swap_attempt_2.c}
• Large items like strings or arrays cannot be passed to 

functions either.

• What is passed is the address of “hello world\n” in the 
memory.

C Course, Programming club, Fall 2008 4

printf(“hello world\n”);



Passing single dimension arrays to 
functions

• In C, you cannot pass the entire data of the array as an 
argument to a function.

– How to pass array then?

• Pass a pointer to the array.

5C Course, Programming club, Fall 2008

int main() {
int sample[10];
func1(sample);
…

}
void func1(int *x) {

…
}
void func1(int x[10]) {

…
}
void func1(int x[]) {

…
}



2-Dimensional Arrays (Array of arrays)

Access the point 1, 2 of the array:
d[1][2]

Initialize (without loops):

C Course, Programming club, Fall 2008 6

int d[3][2];

int d[3][2] = {{1, 2}, {4, 5}, {7, 8}};



More about 2-Dimensional arrays

d[0][0] d[0][1] d[0][2] d[0][3]

d[1][0] d[1][1] d[1][2] d[1][3]

d[2][0] d[2][1] d[2][2] d[2][3]

A Multidimensional array is stored in a row major format.
A two dimensional case:
 next memory element to d[0][3] is d[1][0]

What about memory addresses sequence of a three 
dimensional array?
 next memory element to t[0][0][0] is t[0][0][1]

C Course, Programming club, Fall 2008 7



Multidimensional Arrays

• Syntax

type array_name*size1+*size2+…*sizeN];

e.g

size of array = 3 x 6 x 4 x 8 x 4 bytes

8C Course, Programming club, Fall 2008

int a[3][6][4][8];



Arrays of Pointers

Declares an array of int pointers. Array has 10 
pointers.

Assign address to a pointer in array

To find the value of var,

9C Course, Programming club, Fall 2008

int *x[10];

x[2] = &var;

int i =*x[2];



Pointer to Pointer

• Declaration

– Place an additional asterisk

newbalance is a pointer to a double pointer.

10C Course, Programming club, Fall 2008

double **newbalance;



Pointer to Pointer contd..

{program: pointers.c}

11C Course, Programming club, Fall 2008

#include <stdio.h>

int main() {
int x, *p, **q;
x = 10;
p = &x;
q = &p;

printf(“%d %d %d\n”, x, *p, **q);
return 0;

}



Dynamic Memory Allocation

• To allocate memory at run time.

• malloc(), calloc()

– both return a void*

• you’ll need to typecast each time.

12C Course, Programming club, Fall 2008

char *p;
p = (char *)malloc(1000); /*get 1000 byte space */

int *i;
i = (int *)malloc(1000*sizeof(int));



Dynamic Memory Allocation contd..

• To free memory

• free()

– free(ptr) frees the space allocated to the pointer 
ptr

13C Course, Programming club, Fall 2008

int *i;
i = (int *)malloc(1000*sizeof(int));
.
.
.
free(i);



Pointers to functions

• A function pointer stores the address of the 
function.

• Function pointers allow:
– call the function using a pointer

– functions to be passed as arguments to other 
functions

return_type (*function_name)(type arg1, type 
arg2…) 

{program: function_pointer.c}

14C Course, Programming club, Fall 2008


