6. More on Pointers

14th September
IIT Kanpur

C Course, Programming club, Fall 2008

Pointers and arrays

* Pointers and arrays are tightly coupled.
char a[] = “Hello World”;
char *p = &al0];

chara[12], *p = &a[0];
oo ety Hpr2) (p+3) t(p+d) “(p+d) T(p+6) *(p+?) “(p+8) T(p+9) (p+10) “(p+11)
a[0] a[1] a[2] a[3] a[4] a[b] a[6] a[7] a[8] a[9] a[10] a[11]
H e I I 0 W 0 r I d \0'

Pointers and arrays contd..

* Name of the array is synonymous with the
address of the first element of the array.

int *p;
int sample[10];
p = sample; // same as p = &sample[0];

int *p;

int sample[10];

p =sample;

p[5] = 100; // Both these statements
*(p+5) = 100; // do the same thing

C Course, Programming club, Fall 2008

Pointers and function arguments

* Functions only receive copies of the variables passed to
them.

{program: swap_attempt 1.c}

A function needs to know the address of a variable if it
is to affect the original variable

{program: swap_attempt 2.c}

* Large items like strings or arrays cannot be passed to
functions either.

printf(“hello world\n”);

 What is passed is the address of “hello world\n” in the
memory.

Passing single dimension arrays to
functions

* In C, you cannot pass the entire data of the array as an

argument to a function.
— How to pass array then?
* Pass a pointer to the array.

int main() {
int sample[10];
funcl(sample);

}

void funcl(int *x) {

}
void funcl(int x[10]) {

}
void funcl(int x[]) {

}

2-Dimensional Arrays (Array of arrays)

int d[3][2];

Access the point 1, 2 of the array:
d[1][2]

Initialize (without loops):

int d[3][2] = {{1, 2}, {4, 5}, {7, 8}};

More about 2-Dimensional arrays

A Multidimensional array is stored in a row major format.
A two dimensional case:
=2 next memory element to d[0][3] is d[1][O]

d[0][0] d[0]{1] do}{2] d[o}3]
d[1][0] d[1][1] df1}{2] df1}{3]
d[2][0] d[2][1] d[2][2] d[2][3]

What about memory addresses sequence of a three
dimensional array?
=>» next memory element to t[0][0][0] is t[0][0][1]

Multidimensional Arrays

* Syntax
type array_name|sizel][size2]...[sizeN];

e.g

int a[3][6][4][8];

size of array =3 x 6 x4 x 8 x 4 bytes

Arrays of Pointers

int *x[10];

Declares an array of int pointers. Array has 10
pointers.

Assign address to a pointer in array
X[2] = &var;

To find the value of var,
int i =*x[2];

Pointer to Pointer

e Declaration

— Place an additional asterisk

double **newbalance;

newbalance is a pointer to a double pointer.

Pointer

-l\i\lfl'\\

.

Vanable

value

Single Indirection

Pointer

Pointer

address p———pl address

S

Multiple Indirection

C Course, Programming club, Fall 2008

Variable

value

10

Pointer to Pointer contd..

Hinclude <stdio.h>

int main() {
int x, *p, **q;
x=10;
p = &X;
q = &p;

printf(“%d %d %d\n”, x, *p, **q);
return O;

}

{program: pointers.c}

C Course, Programming club, Fall 2008

11

Dynamic Memory Allocation

To allocate memory at run time.
malloc(), calloc()

— both return a void*

* you’ll need to typecast each time.

char *p;
p = (char *)malloc(1000); /*get 1000 byte space */

int *i;
i = (int *)malloc(1000*sizeof(int));

Dynamic Memory Allocation contd..

* To free memory
* free()

— free(ptr) frees the space allocated to the pointer
ptr

int *i;
i = (int *)malloc(1000*sizeof(int));

1.‘ree(i);

Pointers to functions

* A function pointer stores the address of the
function.

* Function pointers allow:
— call the function using a pointer

— functions to be passed as arguments to other
functions

return_type (*function _name)(type argl, type
arg2...)

{program: function pointer.c}

